JVM调优

参数设置

JVM内存参数设置

JVM调优第一步 首先需要知道每一个jvm参数所代表的含义:

下面表格中详细的描述了各种参数的含义及默认值:

参数名称 含义 默认值
-Xms 初始堆大小 物理内存的1/64(<1GB) 默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制.
-Xmx 最大堆大小 物理内存的1/4(<1GB) 默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn 年轻代大小(1.4or lator) 注意:此处的大小是(eden+ 2 survivor space).与jmap -heap中显示的New gen是不同的。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小.增大年轻代后,将会减小年老代大小.此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8
-XX:NewSize 设置年轻代大小(for 1.3/1.4)
-XX:MaxNewSize 年轻代最大值(for 1.3/1.4)
-XX:PermSize 设置持久代(perm gen)初始值 物理内存的1/64
-XX:MaxPermSize 设置持久代最大值 物理内存的1/4
-Xss 每个线程的堆栈大小 JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K.更具应用的线程所需内存大小进行 调整.在相同物理内存下,减小这个值能生成更多的线程.但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右一般小的应用, 如果栈不是很深, 应该是128k够用的 大的应用建议使用256k。这个选项对性能影响比较大,需要严格的测试。(校长)和threadstacksize选项解释很类似,官方文档似乎没有解释,在论坛中有这样一句话:””-Xss is translated in a VM flag named ThreadStackSize”一般设置这个值就可以了。
-XX:ThreadStackSize Thread Stack Size (0 means use default stack size) [Sparc: 512; Solaris x86: 320 (was 256 prior in 5.0 and earlier); Sparc 64 bit: 1024; Linux amd64: 1024 (was 0 in 5.0 and earlier); all others 0.]
-XX:NewRatio 年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代) -XX:NewRatio=4表示年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5Xms=Xmx并且设置了Xmn的情况下,该参数不需要进行设置。
-XX:SurvivorRatio Eden区与Survivor区的大小比值 设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10

垃圾收集器参数总结

参数 描述
-XX:+UseSerialGC Jvm运行在Client模式下的默认值,打开此开关后,使用Serial + Serial Old的收集器组合进行内存回收
-XX:+UseParNewGC 打开此开关后,使用ParNew + Serial Old的收集器进行垃圾回收
-XX:+UseConcMarkSweepGC 使用ParNew + CMS + Serial Old的收集器组合进行内存回收,Serial Old作为CMS出现“Concurrent Mode Failure”失败后的后备收集器使用。
-XX:+UseParallelGC Jvm运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge + Serial Old的收集器组合进行回收
-XX:+UseParallelOldGC 使用Parallel Scavenge + Parallel Old的收集器组合进行回收
-XX:SurvivorRatio 新生代中Eden区域与Survivor区域的容量比值,默认为8,代表Eden:Subrvivor = 8:1
-XX:PretenureSizeThreshold 直接晋升到老年代对象的大小,设置这个参数后,大于这个参数的对象将直接在老年代分配
-XX:MaxTenuringThreshold 晋升到老年代的对象年龄,每次Minor GC之后,年龄就加1,当超过这个参数的值时进入老年代
-XX:UseAdaptiveSizePolicy 动态调整java堆中各个区域的大小以及进入老年代的年龄
-XX:+HandlePromotionFailure 是否允许新生代收集担保,进行一次minor gc后, 另一块Survivor空间不足时,将直接会在老年代中保留
-XX:ParallelGCThreads 设置并行GC进行内存回收的线程数
-XX:GCTimeRatio GC时间占总时间的比列,默认值为99,即允许1%的GC时间,仅在使用Parallel Scavenge 收集器时有效
-XX:MaxGCPauseMillis 设置GC的最大停顿时间,在Parallel Scavenge 收集器下有效
-XX:CMSInitiatingOccupancyFraction 设置CMS收集器在老年代空间被使用多少后出发垃圾收集,默认值为68%,仅在CMS收集器时有效,-XX:CMSInitiatingOccupancyFraction=70
-XX:+UseCMSCompactAtFullCollection 由于CMS收集器会产生碎片,此参数设置在垃圾收集器后是否需要一次内存碎片整理过程,仅在CMS收集器时有效
-XX:+CMSFullGCBeforeCompaction 设置CMS收集器在进行若干次垃圾收集后再进行一次内存碎片整理过程,通常与UseCMSCompactAtFullCollection参数一起使用
-XX:+UseFastAccessorMethods 原始类型优化
-XX:+DisableExplicitGC 是否关闭手动System.gc
-XX:+CMSParallelRemarkEnabled 降低标记停顿
-XX:LargePageSizeInBytes 内存页的大小不可设置过大,会影响Perm的大小,-XX:LargePageSizeInBytes=128m

垃圾收集器优缺点

垃圾收集器

新生代收集器

Serial + Serial Old

Serial(串行)收集器是最基本、发展历史最悠久的收集器,它是采用复制算法新生代收集器,曾经(JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。它是一个单线程收集器,只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集时,必须暂停其他所有的工作线程,直至Serial收集器收集结束为止(“Stop The World”)。这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说是难以接收的。

下图展示了Serial 收集器(老年代采用Serial Old收集器)的运行过程:

img

为了消除或减少工作线程因内存回收而导致的停顿,HotSpot虚拟机开发团队在JDK 1.3之后的Java发展历程中研发出了各种其他的优秀收集器,这些将在稍后介绍。但是这些收集器的诞生并不意味着Serial收集器已经“老而无用”,实际上到现在为止,它依然是HotSpot虚拟机运行在Client模式下的默认的新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得更高的单线程收集效率。

ParNew收集器

ParNew收集器就是Serial收集器的多线程版本,它也是一个新生代收集器。除了使用多线程进行垃圾收集外,其余行为包括Serial收集器可用的所有控制参数、收集算法(复制算法)、Stop The World、对象分配规则、回收策略等与Serial收集器完全相同,两者共用了相当多的代码。

ParNew收集器的工作过程如下图(老年代采用Serial Old收集器):

img

ParNew收集器除了使用多线程收集外,其他与Serial收集器相比并无太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关的重要原因是,除了Serial收集器外,目前只有它能和CMS收集器(Concurrent Mark Sweep)配合工作,CMS收集器是JDK 1.5推出的一个具有划时代意义的收集器,具体内容将在稍后进行介绍。

ParNew 收集器在单CPU的环境中绝对不会有比Serial收集器有更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越。在多CPU环境下,随着CPU的数量增加,它对于GC时系统资源的有效利用是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多的情况下可使用-XX:ParallerGCThreads参数设置。

Parallel Scavenge 收集器

Parallel Scavenge收集器也是一个并行多线程新生代收集器,它也使用复制算法。Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标是达到一个可控制的吞吐量(Throughput)

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验。而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务

Parallel Scavenge收集器除了会显而易见地提供可以精确控制吞吐量的参数,还提供了一个参数-XX:+UseAdaptiveSizePolicy,这是一个开关参数,打开参数后,就不需要手工指定新生代的大小(-Xmn)、Eden和Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种方式称为GC自适应的调节策略(GC Ergonomics)。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

另外值得注意的一点是,Parallel Scavenge收集器无法与CMS收集器配合使用,所以在JDK 1.6推出Parallel Old之前,如果新生代选择Parallel Scavenge收集器,老年代只有Serial Old收集器能与之配合使用。

年老代收集器

Serial Old收集器

Serial Old 是 Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”(Mark-Compact)算法。

Parallel Old收集器

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程“标记-整理”算法。前面已经提到过,这个收集器是在JDK 1.6中才开始提供的,在此之前,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old以外别无选择,所以在Parallel Old诞生以后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。Parallel Old收集器的工作流程与Parallel Scavenge相同,这里给出Parallel Scavenge/Parallel Old收集器配合使用的流程图:

img

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它非常符合那些集中在互联网站或者B/S系统的服务端上的Java应用,这些应用都非常重视服务的响应速度。从名字上(“Mark Sweep”)就可以看出它是基于“标记-清除”算法实现的。

CMS收集器工作的整个流程分为以下4个步骤:

  • 初始标记(CMS initial mark):仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
  • 并发标记(CMS concurrent mark):进行GC Roots Tracing的过程,在整个过程中耗时最长。
  • 重新标记(CMS remark):为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。此阶段也需要“Stop The World”。
  • 并发清除(CMS concurrent sweep)

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间:

img

优点

CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集低停顿,因此CMS收集器也被称为并发低停顿收集器(Concurrent Low Pause Collector)

缺点

  • 对CPU资源非常敏感 其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个时(比如2个),CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。
  • 无法处理浮动垃圾(Floating Garbage) 可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生。这一部分垃圾出现在标记过程之后,CMS无法再当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就被称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。
  • 标记-清除算法导致的空间碎片 CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往出现老年代空间剩余,但无法找到足够大连续空间来分配当前对象。

G1收集器

G1(Garbage-First)收集器是当今收集器技术发展最前沿的成果之一,它是一款面向服务端应用的垃圾收集器,HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

  • 并行与并发 G1 能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短“Stop The World”停顿时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
  • 分代收集 与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同方式去处理新创建的对象和已存活一段时间、熬过多次GC的旧对象来获取更好的收集效果。
  • 空间整合 G1从整体来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的。这意味着G1运行期间不会产生内存空间碎片,收集后能提供规整的可用内存。此特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
  • 可预测的停顿 这是G1相对CMS的一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了降低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在GC上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

收集器总结

收集器 串行、并行or并发 新生代/老年代 算法 目标 适用场景
Serial 串行 新生代 复制算法 响应速度优先 单CPU环境下的Client模式
Serial Old 串行 老年代 标记-整理 响应速度优先 单CPU环境下的Client模式、CMS的后备预案
ParNew 并行 新生代 复制算法 响应速度优先 多CPU环境时在Server模式下与CMS配合
Parallel Scavenge 并行 新生代 复制算法 吞吐量优先 在后台运算而不需要太多交互的任务
Parallel Old 并行 老年代 标记-整理 吞吐量优先 在后台运算而不需要太多交互的任务
CMS 并发 老年代 标记-清除 响应速度优先 集中在互联网站或B/S系统服务端上的Java应用
G1 并发 both 标记-整理+复制算法 响应速度优先 面向服务端应用,将来替换CMS

性能监视及调优

java开发人员肯定都知道jdk的bin目录下面有javac、java两个命令行工具,那么其他的还有几个命令行工具是干嘛的呢

jdkBin.png

jps虚拟机进程情况

常用参数:
-v 输出虚拟机进程启动时JVM参数

jps.png

上图的关键信息为12567 6682 分别为两个java进程的pid,因为笔者启动了两个java进程 所以有两个

跟使用top(或者ps -ef| grep java)命令查询到的pid是对应一致的

top.png

得到pid可用于后面分析内存状况

jstat虚拟机统计信息监视工具

执行命令jstat -gc 6682 2500 30表示的意思为每隔2500毫秒统计一次集成6682的垃圾收集情况,一共查询30次

20181223154549482729985.png

各参数的意思

  • S0C:Survivor0区的大小
  • S1C:Survivor1区的大小
  • S0U:Survivor0的使用大小
  • S1U:Survivor1的使用大小
  • EC:eden区的大小
  • EU:eden区的使用大小
  • OC:老年代大小
  • OU:老年代使用大小
  • PC:永久代的大小
  • PU:永久代的使用大小
  • YGC:年轻代垃圾回收次数
  • YGCT:年轻代垃圾回收消耗时间
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间

通过这个就可以看出内存的分布和使用情况。

详细的优化方案可以参考深入理解JVM(4)——如何优化Java GC「译」

主要方向为以下两点

  1. 将进入老年代的对象数量降到最低
  2. 减少Full GC的执行时间

jinfo java配置信息工具

jinfo全称Java Configuration Info,所以它的主要作用是实时查看和调整JVM配置参数,

查看JVM参数

用法:jinfo -flag PID
例如:
jinfo -flag MaxMetaspaceSize 18348,得到结果-XX:MaxMetaspaceSize=536870912,即MaxMetaspaceSize为512M
jinfo -flag ThreadStackSize 18348,得到结果-XX:ThreadStackSize=256,即Xss为256K

jmap java内存映像工具

如jmap -heap 26870 可查看java进程的内存分布情况

jhat 虚拟机堆转储快照分析工具

jstack Java堆栈跟踪工具

先学会使用top命令链接

可以使用jps -v得到的pid 如 26870

jstack -l 26870 可以看到进程26870的堆栈信息

参考:如何使用jstack分析线程状态

阿里员工都是这样排查Java问题的

lemon wechat
欢迎大家关注我的订阅号 SeeMoonUp
写的不错?鼓励一下?不差钱?